Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1204126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711626

RESUMO

In obesity, adipose tissue infiltrating macrophages acquire a unique pro-inflammatory polarization, thereby playing a key role in the development of chronic inflammation and Type 2 diabetes. Increased saturated fatty acids (SFAs) levels have been proposed to drive this specific polarization. Accordingly, we investigated the immunometabolic reprogramming in SFA-treated human macrophages. As expected, RNA sequencing highlighted a pro-inflammatory profile but also metabolic signatures including glycolysis and hypoxia as well as a strong unfolded protein response. Glycolysis upregulation was confirmed in SFA-treated macrophages by measuring glycolytic gene expression, glucose uptake, lactate production and extracellular acidification rate. Like in LPS-stimulated macrophages, glycolysis activation in SFA-treated macrophages was dependent on HIF-1α activation and fueled the production of pro-inflammatory cytokines. SFAs and LPS both induced IRE1α endoribonuclease activity, as demonstrated by XBP1 mRNA splicing, but with different kinetics matching HIF-1α activation and the glycolytic gene expression. Interestingly, the knockdown of IRE1α and/or the pharmacological inhibition of its RNase activity prevented HIF-1α activation and significantly decreased glycolysis upregulation. Surprisingly, XBP1s appeared to be dispensable, as demonstrated by the lack of inhibiting effect of XBP1s knockdown on glycolytic genes expression, glucose uptake, lactate production and HIF-1α activation. These experiments demonstrate for the first time a key role of IRE1α in HIF-1α-mediated glycolysis upregulation in macrophages stimulated with pro-inflammatory triggers like LPS or SFAs through XBP1s-independent mechanism. IRE1 could mediate this novel function by targeting other transcripts (mRNA or pre-miRNA) through a mechanism called regulated IRE1-dependent decay or RIDD. Deciphering the underlying mechanisms of this novel IRE1 function might lead to novel therapeutic targets to curtail sterile obesity- or infection-linked inflammation.


Assuntos
Diabetes Mellitus Tipo 2 , Endorribonucleases , Humanos , Glucose , Glicólise , Lipopolissacarídeos/farmacologia , Proteínas Serina-Treonina Quinases , Ribonuclease Pancreático , Ribonucleases , Regulação para Cima , Proteína 1 de Ligação a X-Box/genética
2.
Nutrients ; 13(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34684461

RESUMO

(1) Background: Obesity and type 2 diabetes have been suspected to impact both intrinsic metabolism and function of circulating immune cells. (2) Methods: To further investigate this immunometabolic modulation, we profiled the phospholipidome of the peripheral blood mononuclear cells (PBMCs) in lean, normoglycemic obese (OBNG) and obese with dysglycemia (OBDysG) individuals. (3) Results: The global PBMCs phospholipidome is significantly downmodulated in OBDysG unlike OBNG patients when compared to lean ones. Multiple linear regression analyses show a strong negative relationship between the global PBMCs phospholipidome and parameters assessing insulin resistance. Even though all classes of phospholipid are affected, the relative abundance of each class is maintained with the exception of Lyso-PC/PC and Lyso-PE/PE ratios that are downmodulated in PBMCs of OBDysG compared to OBNG individuals. Interestingly, the percentage of saturated PC is positively associated with glycated hemoglobin (HbA1c). Moreover, a few lipid species are significantly downmodulated in PBMCs of OBDysG compared to OBNG individuals, making possible to distinguish the two phenotypes. (4) Conclusions: This lipidomic study highlights for the first-time modulations of the PBMCs phospholipidome in obese patients with prediabetes and type 2 diabetes. Such phospholipidome remodeling could disrupt the cell membranes and the lipid mediator's levels, driving an immune cell dysfunction.


Assuntos
Glicemia , Resistência à Insulina , Leucócitos Mononucleares/metabolismo , Lipidômica , Obesidade/metabolismo , Fosfolipídeos/metabolismo , Adulto , Biomarcadores , Pesos e Medidas Corporais , Biologia Computacional , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Lipidômica/métodos , Masculino , Espectrometria de Massas , Lipídeos de Membrana , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/etiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...